1. (a)
$$A(3) = 10000 \left(1 + \frac{0.085}{4}\right)^{4(3)} = 10000 (1.02125^{12}) = 12870.19$$
. Thus the amount after 3 years is \$12,870.19.

(b)
$$20000 = 10000 \left(1 + \frac{0.085}{4}\right)^{4t} = 10000 (1.02125^{4t}) \Leftrightarrow 2 = 1.02125^{4t}$$

Thus the investment will double in about 8.24 years.

2. (a)
$$A(2) = 6500 e^{0.06(2)} \approx $7328.73$$

(b)
$$8000 = 6500 e^{0.06t} \Leftrightarrow \frac{16}{13} = e^{0.06t}$$

So the investment doubles in about $3\frac{1}{2}$ years.

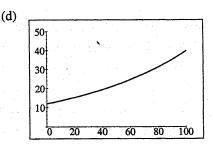
4.
$$5000 = 4000 \left(1 + \frac{0.0975}{2}\right)^{2t} \Leftrightarrow 1.25 = (1.04875)^{2t}$$

So it takes about $2\frac{1}{3}$ years to save \$5000.

9. (a)
$$n(0) = 500$$
.

(b) The relative growth rate is
$$0.45 = 45\%$$
.

(c)
$$n(3) = 500e^{0.45(3)} \approx 1929$$
.


(d)
$$10000 = 500 e^{0.45t} \Leftrightarrow 20 = e^{0.45t}$$

6 hours 40 minutes.

10. (a) The relative growth rate is
$$0.012 = 1.2\%$$
.

(b)
$$n(5) = 12 e^{0.012(5)} = 12 e^{0.06} \approx 12.74$$
 million fish.

(c)
$$30 = 12 e^{0.012t} \Leftrightarrow 2.5 = e^{0.012t}$$

Thus the fish population reaches 30 million after about 76 years.

17. (a)
$$2n_0 = n_0 e^{0.02t} \Leftrightarrow 2 = e^{0.02t}$$

by the year 2029.

(b)
$$3n_0 = n_0 e^{0.02t}$$
 \Leftrightarrow $3 = e^{0.02t}$

triple by the year 2049.

the population will double

the population will

22. (a)
$$m(60) = 40 e^{-0.0277(60)} \approx 7.59$$
, so the mass remaining after 60 days is about 8 g.

(b)
$$10 = 40 e^{-0.0277t}$$
 \Leftrightarrow $0.25 = e^{-0.0277t}$ so it takes about 50 days.

(c) We need to solve for
$$t$$
 in the equation $20=40\,e^{-0.0277\,t}$. We have $20=40\,e^{-0.0277\,t}$ \Leftrightarrow $e^{-0.277\,t}=\frac{1}{2}$ Thus the half-life of thorium-234 is about 25 days.

29. (a)
$$T(0) = 65 + 145 e^{-0.05(0)} = 65 + 145 = 210$$
°F.

(b)
$$T(10)=65+145~e^{-0.05(10)}\approx 152.9$$
. Thus the temperature after 10 minutes is about 153°F.

(c)
$$100 = 65 + 145 e^{-0.05t} \Leftrightarrow 35 = 145 e^{-0.05t} \Leftrightarrow 0.2414 = e^{-0.05t}$$

Thus the temperature will be 100°F in

about 28 minutes.