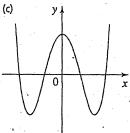

(a)
$$f(x) = 2x^5 - 3x^2 + 2$$
 (b) $f(x) = x^3 - x^7$


(c)
$$f(x) = \frac{1 - x^2}{1 + x^2}$$
 (d) $f(x) = \frac{1}{x + 2}$

(d)
$$f(x) = \frac{1}{x+2}$$

6. Determine whether the function in the figure is even, odd, or neither.

- 57. Express the quadratic function $f(x) = x^2 + 4x + 1$ in standard form.
- 58. Express the quadratic function $f(x) = -2x^2 + 12x + 12$ in standard form.
- 59. Find the minimum value of the function $g(x) = 2x^2 + 4x - 5.$
- 60. Find the maximum value of the function $f(x)=1-x-x^2.$
- 61. A stone is thrown upward from the top of a building. Its height (in feet) above the ground after t seconds is given by $h(t) = -16t^2 + 48t + 32$. What maximum height does it reach?
- 62. The profit P (in dollars) generated by selling x units of a certain commodity is given by

$$P(x) = -1500 + 12x - 0.0004x^2$$

What is the maximum profit, and how many units must be

66. If
$$f(x) = 1 + x^2$$
 and $g(x) = \sqrt{x - 1}$, find the following functions,

(a)
$$f \circ g$$

(b)
$$a \circ f$$

(c)
$$(f \circ g)(2)$$

(d)
$$(f \circ f)(2)$$

(e)
$$f \circ g \circ f$$

(e)
$$f \circ g \circ f$$
 (f) $g \circ f \circ g$

67-68 Find the functions $f \circ g$, $g \circ f$, $f \circ f$, and $g \circ g$ and their domains.

67.
$$f(x) = 3x - 1$$
, $g(x) = 2x - x^2$

68.
$$f(x) = \sqrt{x}$$
, $g(x) = \frac{2}{x-4}$

69. Find
$$f \circ g \circ h$$
, where $f(x) = \sqrt{1-x}$, $g(x) = 1-x^2$, and $h(x) = 1 + \sqrt{x}$.

70. If
$$T(x) = \frac{1}{\sqrt{1 + \sqrt{x}}}$$
, find functions f, g , and h such that $f \circ g \circ h = T$.

71-76 ■ Determine whether the function is one-to-one.

71.
$$f(x) = 3 + x^3$$

72.
$$q(x) = 2 - 2x + x^2$$

73.
$$h(x) = \frac{1}{x^4}$$

73.
$$h(x) = \frac{1}{x^4}$$
 74. $r(x) = 2 + \sqrt{x+3}$

75.
$$p(x) = 3.3 + 1.6x - 2.5x^3$$

76.
$$q(x) = 3.3 + 1.6x + 2.5x^3$$

77-80 Find the inverse of the function.

77.
$$f(x) = 3x - 2$$

$$78. \ f(x) = \frac{2x+1}{3}$$

79.
$$f(x) = (x + 1)^3$$

80.
$$f(x) = 1 + \sqrt[5]{x-2}$$

81. (a) Sketch the graph of the function

$$f(x)=x^2-4, \quad x\geq 0$$

- (b) Use part (a) to sketch the graph of f^{-1} .
- (c) Find an equation for f^{-1} .
- 82. (a) Show that the function $f(x) = 1 + \sqrt{x}$ is one-to-one.
 - (b) Sketch the graph of f.
 - (c) Use part (b) to sketch the graph of f^{-1} .
 - (d) Find an equation for f^{-1} .

CHAPTER 5 REVIEW

1-6 ■ Graph the polynomial. Show clearly all x- and v-intercepts.

1.
$$P(x) = (x-2)^3 + 8$$

2.
$$P(x) = 32 - 2x^4$$

3.
$$P(x) = x^3 - 9x$$

3.
$$P(x) = x^3 - 9x$$
 4. $P(x) = x^3 - 5x^2 - 6x$

5.
$$P(x) = x^3 - 5x^2 - 4x + 20$$

6.
$$P(x) = x^4 - 9x^2$$

45-50 ■ Graph the rational function. Show clearly all x- and y-intercepts and asymptotes.

45.
$$r(x) = \frac{3x-12}{x+1}$$
 46. $r(x) = \frac{1}{(x+2)^2}$

46.
$$r(x) = \frac{1}{(x+2)}$$

47.
$$r(x) = \frac{x-2}{x^2-2x-8}$$

47.
$$r(x) = \frac{x-2}{x^2-2x-8}$$
 48. $r(x) = \frac{2x^2-6x-7}{x-4}$

49.
$$r(x) = \frac{x^2 - 9}{2x^2 + 1}$$

$$50. \ r(x) = \frac{x^3 + 27}{x + 4}$$