- 1. $\begin{cases} x+y=8 \\ x-3y=0 \end{cases}$ From the second equation, we have x=3y, and substituting this into the first equation gives $3y+y=8 \Leftrightarrow 4y=8 \Leftrightarrow y=2$. Since x=3y, we have x=6 when y=2. Thus the solution is (6,2).
- 3. $\begin{cases} y = x^2 \\ y = x + 6 \end{cases}$ Substituting $y = x^2$ into the second equation gives $x^2 = x + 6 \Leftrightarrow 0 = x^2 x 6 = (x 3)(x + 2) \Rightarrow x = 3 \text{ or } x = -2.$ So since $y = x^2$, the solutions are (-2, 4) and (3, 9).
- 5. $\begin{cases} x^2 + y^2 = 8 \\ x + y = 0 \end{cases}$ Solving the second equation for y gives y = -x, and substituting this into the first equation gives $x^2 + (-x)^2 = 8$ $\Leftrightarrow 2x^2 = 8 \Leftrightarrow x = \pm 2$. Thus the solutions are (2, -2) and (-2, 2).
- 7. $\begin{cases} 5x + 2y = 2 \\ 7x + 3y = 6 \end{cases}$ Multiplying the first equation by 3 and the second by -2 gives the system $\begin{cases} 15x + 6y = 6 \\ -14x 6y = -12 \end{cases}$ Adding, we get x = -6, and substituting into the first equation in the original system gives $5(-6) + 2y = 2 \iff 2y = 2 + 30 = 32 \iff y = 16$. The solution is (-6, 16).
- 9. $\begin{cases} x^2 2y = 1 \\ x^2 + 5y = 29 \end{cases}$ Subtracting the first equation from the second equation gives $7y = 28 \Rightarrow y = 4$. Substituting y = 4 into the first equation of the original system gives $x^2 2(4) = 1 \Leftrightarrow x^2 = 9 \Leftrightarrow x = \pm 3$. The solutions are (3, 4) and (-3, 4).
- 11. $\begin{cases} 3x^2 y^2 = 11 \\ x^2 + 4y^2 = 8 \end{cases}$ Multiplying the first equation by 4 gives the system $\begin{cases} 12x^2 4y^2 = 44 \\ x^2 + 4y^2 = 8 \end{cases}$ Adding the equations gives $13x^2 = 52 \Leftrightarrow x = \pm 2$. Thus, the solutions are (2, 1), (2, -1), (-2, 1), and (-2, -1).
- 13. $\begin{cases} y+x^2=4x \\ y+4x=16 \end{cases}$ Subtracting the second equation from the first equation gives $x^2-4x=4x-16$ $\Leftrightarrow x^2-8x+16=0 \Leftrightarrow (x-4)^2=0 \Leftrightarrow x=4$. Substituting this value for x into either of the original equations gives y=0. Therefore, the solution is (4,0).
- 15. $\begin{cases} x 2y = 2 \\ y^2 x^2 = 2x + 4 \end{cases}$ Now $x 2y = 2 \Leftrightarrow x = 2y + 2$. Substituting for x gives $y^2 x^2 = 2x + 4 \Leftrightarrow y^2 (2y + 2)^2 = 2(2y + 2) + 4 \Leftrightarrow y^2 4y^2 8y 4 = 4y + 4 + 4 \Leftrightarrow y^2 + 4y + 4 = 0 \Leftrightarrow (y + 2)^2 = 0 \Leftrightarrow y = -2.$ x = 2(-2) + 2 = -2. Thus the solution is (-2, -2).