$$x^2+y^2-4y+\left(\frac{-4}{2}\right)^2=12+\left(\frac{-4}{2}\right)^2 \Leftrightarrow x^2+(y-2)^2=16$$
. Thus, the center is $(0,2)$, and the radius is 4. So the circle $x^2+y^2=4$, with center $(0,0)$ and radius 2, sits completely inside the larger circle. Thus, the area is $\pi 4^2-\pi 2^2=16\pi-4\pi=12\pi$.

77. Completing the square gives $x^2 + y^2 - 4y - 12 = 0$ \Leftrightarrow $x^2 + y^2 - 4y + \underline{\hspace{0.5cm}} = 12$ \Leftrightarrow

Completing the square gives
$$x^2 + y^2 + ax + by + c = 0 \Leftrightarrow x^2 + ax + \underline{\qquad} + y^2 + by + \underline{\qquad} = -c \Leftrightarrow x^2 + ax + \left(\frac{a}{2}\right)^2 + y^2 + by + \left(\frac{b}{2}\right)^2 = -c + \left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 \Leftrightarrow x^2 + ax + \left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 \Leftrightarrow x^2 + ax + \left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 + \left(\frac{b}{2}\right)^2 \Leftrightarrow x^2 + ax + \left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 + \left(\frac{b}{2}\right)^2$$

$$\left(x+\frac{a}{2}\right)^2+\left(y+\frac{b}{2}\right)^2=-c+\frac{a^2+b^2}{4}.$$
 This equation represents a circle only when $-c+\frac{a^2+b^2}{4}>0$. This equation represents a point

This equation represents a circle only when $-c + \frac{a^2 + b^2}{4} > 0$. This equation represents a point

This equation represents a circle only when
$$-c + \frac{a^2 + b^2}{4} > 0$$
. This equation represents a point when $-c + \frac{a^2 + b^2}{4} = 0$, and this equation represents the empty set when $-c + \frac{a^2 + b^2}{4} < 0$.

When the equation represents a circle, the center is $\left(-\frac{a}{2}, -\frac{b}{2}\right)$, and the radius is

 $\sqrt{-c + \frac{a^2 + b^2}{4}} = \frac{1}{2}\sqrt{a^2 + b^2 - 4ac}.$