36. Let the woman be at point A, the first landmark (at 62°) be at point B, and the other landmark be at point C. We want to find the length BC. Now, $\cos 62^\circ = \frac{1150}{AB} \Leftrightarrow AB = \frac{1150}{\cos 62^\circ} \approx 2450$.

 $BC = \sqrt{2450^2 + 1956^2 - 2(2450)(1956) \cdot \cos 43^\circ} \Rightarrow BC \approx 1679$. Thus, the two landmarks

Similarly, $\cos 54^{\circ} = \frac{1150}{AC}$ \Leftrightarrow $AC = \frac{1150}{\cos 54^{\circ}} \approx 1956$. Therefore, by the Law of Cosines, $BC^2 = AB^2 + AC^2 - 2(AB)(AC) \cdot \cos 43^{\circ} \Rightarrow$

are roughly 1679 feet apart.