

45. 
$$f(x) = \log_2(x-4)$$

The graph of f is obtained from the graph of  $y = \log_2 x$  by shifting it to the right 4 units.

Domain:  $(4, \infty)$ Range:  $(-\infty, \infty)$ 

Vertical asymptote: x = 4

$$47. \quad g(x) = \log_5(-x)$$

The graph of g is obtained from the graph of  $y = \log_5 x$  by reflecting it about the y-axis. Domain:  $(-\infty, 0)$ 

Range:  $(-\infty, \infty)$ 

Vertical asymptote: x = 0

 $y = 2 + \log_3 x$ 

The graph of  $y = 2 + \log_3 x$  is obtained from the graph of  $y = \log_3 x$  by shifting it upward 2 units.

Domain:  $(0, \infty)$ 

Vertical asymptote: x = 0

Range:  $(-\infty, \infty)$ 

51. 
$$y = 1 - \log_{10} x$$

49.

The graph of  $y = 1 - \log_{10} x$  is obtained from the graph of  $y = \log_{10} x$  by reflecting it about the x-axis, and then shifting it upward 1 unit. Domain:  $(0, \infty)$ 

Range:  $(-\infty, \infty)$ 

Vertical asymptote: x = 0

