71. (a) $f(x) = \log_2(\log_{10} x)$. Since the domain of $\log_2 x$ is the positive real numbers, we have: $\log_{10} x > 0 \iff x > 10^0 = 1$. Thus the domain of f(x) is $(1, \infty)$.

(b)
$$y = \log_2(\log_{10} x) \Leftrightarrow 2^y = \log_{10} x \Leftrightarrow 10^{2^y} = x$$
. Thus $f^{-1}(x) = 10^{2^x}$.

73. (a)
$$f(x) = \frac{2^x}{1+2^x}. \quad y = \frac{2^x}{1+2^x} \quad \Leftrightarrow \quad y+y^2 = 2^x \quad \Leftrightarrow \quad y = 2^x - y^2 = 2^x (1-y) \quad \Leftrightarrow \quad 2^x = \frac{y}{1-y} \quad \Leftrightarrow \quad x = \log_2\left(\frac{y}{1-y}\right). \quad \text{Thus } f^{-1}(x) = \log_2\left(\frac{x}{1-x}\right).$$

(b) $\frac{x}{1-x} > 0$. Solving this using the methods from Chapter 2, we start with the endpoints of the potential intervals, 0 and 1.

Interval	$(-\infty,0)$	(0,1)	$(1,\infty)$
Sign of x	_	+	+
Sign of $1-x$	+	+	_
Sign of $\frac{x}{1-x}$		+	_

Thus the domain of $f^{-1}(x)$ is (0,1).

75.
$$\log(\log 10^{100}) = \log 100 = 2$$

$$\log(\log(\log 10^{googol})) = \log(\log(googol)) = \log(\log 10^{100}) = \log(100) = 2$$

77. The numbers between 1000 and 9999 (inclusive) each have 4 digits, while $\log 1000 = 3$ and $\log 10,000 = 4$. Since $[\![\log x]\!] = 3$ for all integers x where $1000 \le x < 10000$, the number of digits is $[\![\log x]\!] + 1$. Likewise, if x is an integer where $10^{n-1} \le x < 10^n$, then x would have n digits and $[\![\log x]\!] = n - 1$. Since $[\![\log x]\!] = n - 1$ \Leftrightarrow $n = [\![\log x]\!] + 1$, the number of digits in x is $[\![\log x]\!] + 1$.