27. This is an isosceles right triangle, so the other leg = $16 \tan 45^\circ = 16$, hypotenuse = $\frac{16}{\sin 45^\circ} = 16\sqrt{2} \approx 22.63$, and other angle = $90^\circ - 45^\circ = 45^\circ$

- 29. The other $\log = 35 \tan 52^{\circ} = 44.80$, hypotenuse $= \frac{35}{\cos 52^{\circ}} = 56.85$, and other angle $= 90^{\circ} 52^{\circ} = 52^{\circ}$.
- 31. $\sin \theta \approx \frac{1}{2.24} \approx 0.45$. $\cos \theta \approx \frac{2}{2.24} \approx 0.89$, $\tan \theta = \frac{1}{2}$, $\csc \theta \approx 2.24$, $\sec \theta \approx \frac{2.24}{2} \approx 1.12$, $\cot \theta \approx 2.00$.
- 33. Let h be the height, in feet, of the Empire State Building. Then $\tan 11^\circ = \frac{h}{5280} \Leftrightarrow h = 5280 \cdot \tan 11^\circ \approx 1026$ ft.
- 35. (a) Let h be the distance, in miles, that the beam has diverged. Then $\tan 0.5^{\circ} = \frac{h}{240,000} \Leftrightarrow h = 240,000 \cdot \tan 0.5^{\circ} \approx 2100 \text{ mi}.$
 - (b) Since the deflection is about 2100 mi whereas the radius of the moon is about 1000 mi, the beam will not strike the moon.
- 37. Let h represent the height, in feet, that the ladder reaches on the building. Then $\sin 72^\circ = \frac{h}{20} \iff h = 20 \cdot \sin 72^\circ \approx 19$ ft.
- 39. Let θ be the angle of elevation of the sun. Then $\tan \theta = \frac{96}{120} = 0.8 \Leftrightarrow \theta = \tan^{-1} 0.8 \approx 0.675 \approx 38.7^{\circ}$.
- 41. Let h be the height, in feet, of the kite above the ground. Then $\sin 50^\circ = \frac{h}{450}$ \Leftrightarrow $h = 450 \cdot \sin 50^\circ \approx 345$ ft.
- 43. Let h_1 be the height of the window in feet and h_2 be the height from the window to the top of the tower. Then $\tan 25^\circ = \frac{h_1}{325} \quad \Leftrightarrow \quad h_1 = 325 \cdot \tan 25^\circ \approx 152 \text{ ft. Also, } \tan 39^\circ = \frac{h_2}{325} \quad \Leftrightarrow \quad h_2 = 325 \cdot \tan 39^\circ \approx 263 \text{ ft.}$ Therefore, the height of the window is approximately 152 ft and the height of the tower is approximately 152 + 263 = 415 ft.
- 45. Let d_1 be the distance, in feet, between a point directly below the plane and one car, and d_2 be the distance, in feet, between the same point and the other car. Then $\tan 52^\circ = \frac{d_1}{5150} \Leftrightarrow d_1 = 5150 \cdot \tan 52^\circ \approx 6591.7$ ft. Also, $\tan 38^\circ = \frac{d_2}{5150} \Leftrightarrow d_2 = 5150 \cdot \tan 38^\circ \approx 4023.6$ ft. So the distance between the two cars is now about 2570 ft.